Annihilating filter-based decoding in the compressed sensing framework
نویسندگان
چکیده
Recent results in compressed sensing or compressive sampling suggest that a relatively small set of measurements taken as the inner product with universal random measurement vectors can well represent a source that is sparse in some fixed basis. By adapting a deterministic, non-universal and structured sensing device, this paper presents results on using the annihilating filter to decode the information taken in this new compressed sensing environment. The information is the minimum amount of nonadaptive knowledge that makes it possible to go back to the original object. We will show that for a k-sparse signal of dimension n, the proposed decoder needs 2k measurements and its complexity is of O(k) whereas for the decoding based on the 1 minimization, the number of measurements needs to be of O(k log(n)) and the complexity is of O(n). In the case of noisy measurements, we first denoise the signal using an iterative algorithm that finds the closest rank k and Toeplitz matrix to the measurements matrix (in Frobenius norm) before applying the annihilating filter method. Furthermore, for a k-sparse vector with known equal coefficients, we propose an algebraic decoder which needs only k measurements for the signal reconstruction. Finally, we provide simulation results that demonstrate the performance of our algorithm.
منابع مشابه
In vivo accelerated MR parameter mapping using annihilating filter - based low rank Hankel matrix ( ALOHA )
The purpose of this study is to develop an accelerated MR parameter mapping technique. For accelerated T1 and T2 mapping, spin-echo inversion recovery and multi-echo spin echo pulse sequences were redesigned to perform undersampling along phase encoding direction. The highly missing k-space were then interpolated by using recently proposed annihilating filter based low-rank Hankel matrix approa...
متن کاملBayer and panchromatic color filter array demosaicing by sparse recovery
The utility of Compressed Sensing (CS) for demosaicing of digital images have been explored by few recent efforts [1][2][3]. Most recently, a Compressive Demosaicing [3] framework, based on employing a random panchromatic Color Filter Array (CFA) at the sensing stage, has provided compelling CS-based demosaicing results by visually outperforming other leading techniques. Meanwhile, it is well k...
متن کاملEfficient Compressed Sensing using Lossless Expander Graphs with Fast Bilateral Quantum Recovery Algorithm
Compressed Sensing is a novel approach to bypass the Nyquist sampling limits whenever the signals are sparse, and to compress them simultaneously. In this paper, improving our previous results, we will propose a compressed sensing algorithm based on the high-quality lossless unbalanced vertex expander graphs, with a fast and simple quantum decoding algorithm. Exploiting the unique neighborhood ...
متن کاملA Block-Wise random sampling approach: Compressed sensing problem
The focus of this paper is to consider the compressed sensing problem. It is stated that the compressed sensing theory, under certain conditions, helps relax the Nyquist sampling theory and takes smaller samples. One of the important tasks in this theory is to carefully design measurement matrix (sampling operator). Most existing methods in the literature attempt to optimize a randomly initiali...
متن کاملAccelerating Magnetic Resonance Imaging through Compressed Sensing Theory in the Direction space-k
Magnetic Resonance Imaging (MRI) is a noninvasive imaging method widely used in medical diagnosis. Data in MRI are obtained line-by-line within the K-space, where there are usually a great number of such lines. For this reason, magnetic resonance imaging is slow. MRI can be accelerated through several methods such as parallel imaging and compressed sensing, where a fraction of the K-space lines...
متن کامل